Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Exercises - Page 431: 37

Answer

$$ 2 \left(\frac{1}{3}x^{3/2}+\frac{1}{2}x+\sqrt{x}+\ln|\sqrt{x}-1|\right)+C$$

Work Step by Step

Given $$\int \frac{x}{\sqrt{x}-1} d x $$ Let $$ u^2 =x\ \ \ \ \ \ 2udu=dx$$ Then \begin{align*} \int \frac{x}{\sqrt{x}-1} d x&=2\int \frac{u^3 du}{u-1}\\ &=2\int \left(u^2+u+1+\frac{1}{u-1}\right)du\\ &=2 \left(\frac{1}{3}u^3+\frac{1}{2}u^2+u+\ln|u-1|\right)+C\\ &= 2 \left(\frac{1}{3}x^{3/2}+\frac{1}{2}x+\sqrt{x}+\ln|\sqrt{x}-1|\right)+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.