Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Exercises - Page 431: 25

Answer

$$6\left(\frac{1}{7}x^{7/6}-\frac{1}{5}x^{5/6}+\frac{1}{3}x^{1/2}-1+\tan^{-1}x^{1/6}\right)+C$$

Work Step by Step

Given $$\int \frac{x^{1 / 2} d x}{x^{1 / 3}+1}$$ Let $$u^6 =x\ \ \ \ \ \ 6u^5= dx $$ Then \begin{align*} \int \frac{x^{1 / 2} d x}{x^{1 / 3}+1}&=\int \frac{6u^8 d u}{u^2+1}\\ &= 6\int \left(u^6-u^4+u^2-1+\frac{1}{u^2+1}\right)du\\ &=6\left(\frac{1}{7}u^7-\frac{1}{5}u^5+\frac{1}{3}u^3-1+\tan^{-1}u\right)+C\\ &= 6\left(\frac{1}{7}x^{7/6}-\frac{1}{5}x^{5/6}+\frac{1}{3}x^{1/2}-1+\tan^{-1}x^{1/6}\right)+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.