Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Exercises - Page 431: 18

Answer

$$\ln|x^3-x|+C$$

Work Step by Step

Given $$ \int \frac{\left(3 x^{2}-1\right) d x}{x\left(x^{2}-1\right)}$$ Since \begin{align*} \int \frac{\left(3 x^{2}-1\right) d x}{x\left(x^{2}-1\right)}&=\int \frac{\left(3 x^{2}-1\right) d x}{\left(x^{3}-x\right)} \end{align*} Let $$u =x^3-x\ \ \ \to\ \ \ du=(3x^2 -1)dx$$ Then \begin{align*} \int \frac{\left(3 x^{2}-1\right) d x}{x\left(x^{2}-1\right)}&=\int \frac{\left(3 x^{2}-1\right) d x}{\left(x^{3}-x\right)}\\ &=\int \frac{du}{u}\\ &=\ln u+C\\ &=\ln|x^3-x|+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.