Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Exercises - Page 431: 39

Answer

$$ 2\left( \frac{1}{5}(x+1)^{5/2} -\frac{2}{3}(x+1)^{3/2}+\sqrt{x+1}\right)+C $$

Work Step by Step

Given $$\int \frac{x^{2}}{\sqrt{x+1}} d x$$ Let $$u^2 =x+1\ \ \ \ \ \ \ 2udu=dx $$ Then \begin{align*} \int \frac{x^{2}}{\sqrt{x+1}} d x&=2\int \frac{(u^2-1)^{2}}{u} udu\\ &= 2\int (u^4-2u^2+1)du\\ &= 2\left( \frac{1}{5}u^5 -\frac{2}{3}u^3+u\right)+C \\ &= 2\left( \frac{1}{5}(x+1)^{5/2} -\frac{2}{3}(x+1)^{3/2}+\sqrt{x+1}\right)+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.