Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Exercises - Page 431: 20

Answer

$$-(x^2-1)^{-1/2}+C$$

Work Step by Step

Given $$\int \frac{x d x}{\left(x^{2}-1\right)^{3 / 2}}$$ Let $$ u=x^2 -1\ \ \ \ \ \ \ \ du=2xdx$$ Then \begin{align*} \int \frac{x d x}{\left(x^{2}-1\right)^{3 / 2}}&=\frac{1}{2}\int \frac{ d u}{u^{3 / 2}}\\ &=-u^{-1/2}+C\\ &=-(x^2-1)^{-1/2}+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.