Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Exercises - Page 431: 28

Answer

$$ \frac{ t}{\sqrt{1+4 t^{2}}}+C$$

Work Step by Step

Given $$\int \frac{d t}{\left(1+4 t^{2}\right)^{3 / 2}}$$ Let $$ 2t=\tan u\ \ \ \ \ \ 2dt =\sec^2 udu$$ Then \begin{aligned} \int \frac{1}{\left(1+4 t^{2}\right)^{3 / 2}} d t &=\int \frac{1}{\left(1+\tan ^{2} u\right)^{3 / 2}} \frac{\sec ^{2} u d u}{2} \\ &=\int \frac{1}{\left(\sec ^{2} u\right)^{3 / 2}} \frac{\sec ^{2} u d u}{2} \\ &=\int \frac{1}{\sec ^{3} u} \frac{\sec ^{2} u d u}{2} \\ &=\int \frac{d u}{2 \sec u} \\ &=\frac{1}{2} \int \cos u \, d u \\ &=\frac{1}{2} \sin u+C \\ &= \frac{ t}{\sqrt{1+4 t^{2}}}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.