Answer
$$\frac{1}{2}\left( x+\frac{1}{8}\sin 8x\right)+C$$
Work Step by Step
Given $$\int \cos ^{2} 4 x d x$$
Then
\begin{align*}
\int \cos ^{2} 4 x d x&=\frac{1}{2}\int [1+\cos 8 x] d x\\
&=\frac{1}{2}\left( x+\frac{1}{8}\sin 8x\right)+C
\end{align*}