Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.2 Extreme Values - Exercises - Page 181: 48

Answer

The maximum is $ f(\pi/2) =4$ and the minimum is $f( 3\pi/2) =-4$

Work Step by Step

Given $$y=4 \sin ^{3} \theta-3 \cos ^{2} \theta, \quad[0,2 \pi]$$ Since \begin{align*} \frac{dy}{d\theta}&=12 \sin ^{2} \theta \cos \theta+6 \cos \theta \sin \theta \end{align*} To find critical points \begin{align*} f'(\theta)&=0\\ 12 \sin ^{2} \theta \cos \theta+6 \cos \theta \sin \theta&=0\\ (2 \sin \theta +1)6 \cos \theta \sin \theta &=0 \end{align*} Then $\theta \in [0,2\pi]$ $$\theta=0, \quad \pi / 2, \quad \pi, \quad 7 \pi / 6, \quad 3 \pi / 2, \quad 11 \pi / 6, \quad 2 \pi$$ Since \begin{align*} f(0)&=-3 \\ f(\pi/2)&=4\\ f(\pi)&=-3\\ f(7\pi/6)&=-11/4\\ f(3\pi/2)&=-4\\ f(11\pi/6)&=-11/4\\ f(2\pi)&=-3 \end{align*} Then the maximum is $ f(\pi/2) =4$ and the minimum is $f( 3\pi/2) =-4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.