Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.2 Extreme Values - Exercises - Page 181: 40

Answer

The maximum is $f(0)=1$ and the minimum is $f\left( 1\right) =\sqrt{2}-2 $

Work Step by Step

Given $$y=\sqrt{1+x^{2}}-2 x, \quad[0,1]$$ Since \begin{align*} \frac{dy}{dx}&=\frac{x}{\sqrt{1+x^2}}-2\\ &=\frac{x -2\sqrt{1+x^2} }{\sqrt{1+x^2}} \end{align*} Find the critical points \begin{align*} f'(x)&=0\\ \frac{x -2\sqrt{1+x^2} }{\sqrt{1+x^2}}&=0\\ x -2\sqrt{1+x^2}&=0\\ 4-3x^2&=0 \end{align*} Then $x=\pm2/\sqrt{3}$. Because $\pm2/\sqrt{3}\notin [0,1]$, then $f(x)$ has no critical point, since \begin{align*} f(0)&=1\\ f(1)&= \sqrt{2}-2 \end{align*} Then the maximum is $f(0)=1$ and the minimum is $f\left( 1\right) =\sqrt{2}-2 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.