Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.2 Extreme Values - Exercises - Page 181: 34

Answer

The minimum value is $ f(-2)=-44$ and the maximum value is $ f(2)=84$

Work Step by Step

$ f'(x)=10x^{4}+10x $ is defined everywhere. The critical points are the solutions of $ f'(x)=0$ $10x^{4}+10x= 10x(x^{3}+1)=0$ $\implies x=0$ or $ x=-1$ The critical points are $0$ and $-1$. In order to find the maximum and minimum values, we compare the values of the function at the critical points and at the end points. $ f(0)=0$ $ f(-1)= 2(-1)^{5}+5(-1)^{2}=3$ $ f(-2)= 2(-2)^{5}+5(-2)^{2}=-44$ $ f(2)= 2(2)^{5}+5(2)^{2}=84$ The minimum value is $ f(-2)=-44$ and the maximum value is $ f(2)=84$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.