Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.2 Extreme Values - Exercises - Page 181: 47

Answer

The maximum is $ f(5\pi/3) \approx 6.968$ and the minimum is $f( \pi/ 3) \approx - 0.685$

Work Step by Step

Given $$y=\theta-2 \sin \theta, \quad[0,2 \pi]$$ Since \begin{align*} \frac{dy}{d\theta}&=1-2\cos \theta \end{align*} To find critical points \begin{align*} f'(\theta)&=0\\ 1-2\cos \theta&=0\\ \cos \theta &=\frac{1}{2} \end{align*} Then $\theta= \pi/3,\ \ 5\pi/3$. Because $\pi/3,\ 5\pi/3\in [0,2\pi]$, then $f(\theta)$ has a critical point $\theta=\pi/3,\ \ 5\pi/3$, since \begin{align*} f(0)&\approx 6.283 \\ f(\pi/3)&\approx- 0.685\\ f(5\pi/3)&\approx 6.968\\ f(2\pi/)&\approx 6.283 \end{align*} Then the maximum is $ f(5\pi/3) \approx 6.968$ and the minimum is $f( \pi/ 3) \approx - 0.685$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.