Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.2 Extreme Values - Exercises - Page 181: 35

Answer

The maximum is $f(5)=26$ and the minimum is $f(6) =37/2$

Work Step by Step

Given $$y=\frac{x^{2}+1}{x-4}, \quad[5,6] $$ Since \begin{align*} \frac{dy}{dx}&= \frac{\frac{d}{dx}\left(x^2+1\right)\left(x-4\right)-\frac{d}{dx}\left(x-4\right)\left(x^2+1\right)}{\left(x-4\right)^2}\\ &=\frac{x^2-8x-1}{\left(x-4\right)^2} \end{align*} Find critical points \begin{align*} f'(x)&=0\\ \frac{x^2-8x-1}{\left(x-4\right)^2}&=0\\ x^2-8x-1&=0 \end{align*} Then $x=4 \pm \sqrt{17}$. Because $4 \pm \sqrt{17}\notin [5,6]$ , $f(x)$ has no critical points on $[5,6] $, since \begin{align*} f(5)&= 26\\ f(6)&=37/2 \end{align*} Then the maximum is $f(5)=26$ and the minimum is $f(6) =37/2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.