Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.2 Extreme Values - Exercises - Page 181: 38

Answer

The maximum is $f(2)=2 \sqrt{5}-2$ and the minimum is $f\left( \sqrt{\dfrac{1}{3}}\right) =\sqrt{3}$

Work Step by Step

Given $$y=2 \sqrt{x^{2}+1}-x, \quad[0,2]$$ Since \begin{align*} \frac{dy}{dx}&=\frac{2x}{\sqrt{x^2+1}}-1\\ &=\frac{2x-\sqrt{x^2+1}}{\sqrt{x^2+1}} \end{align*} Find the critical points \begin{align*} f'(x)&=0\\ \frac{2x-\sqrt{x^2+1}}{\sqrt{x^2+1}}&=0\\ 2x-\sqrt{x^2+1}&=0\\ 3x^2 -1&=0 \end{align*} Then $x=\pm \sqrt{\dfrac{1}{3}}$. Because $- \sqrt{\dfrac{1}{3}}\notin [0,2]$, then $f(x)$ has a critical point at $x= \sqrt{\dfrac{1}{3}} $, so \begin{align*} f\left( \sqrt{\dfrac{1}{3}}\right)&=\sqrt{3}\\ f(0)&= 2\\ f(2)&=2 \sqrt{5}-2 \end{align*} Then the maximum is $f(2)=2 \sqrt{5}-2$ and the minimum is $f\left( \sqrt{\dfrac{1}{3}}\right) =\sqrt{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.