Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.2 Extreme Values - Exercises - Page 181: 36

Answer

The maximum is $f(1)=0$ and the minimum is $f(3) =-1/9$

Work Step by Step

Given $$y=\frac{1-x}{x^{2}+3 x}, \quad[1,4]$$ Since \begin{align*} \frac{dy}{dx}&= \frac{\frac{d}{dx}\left(1-x\right)\left(x^2+3x\right)-\frac{d}{dx}\left(x^2+3x\right)\left(1-x\right)}{\left(x^2+3x\right)^2}\\ &=\frac{x^2-2x-3}{\left(x^2+3x\right)^2} \end{align*} Find the critical points \begin{align*} f'(x)&=0\\ \frac{x^2-2x-3}{\left(x^2+3x\right)^2}&=0\\ x^2-2x-3&=0\\ (x+1)(x-3)&=0 \end{align*} Then $x=-1,\ \ x= 3$. Because $-1\notin [1,4]$, then $f(x)$ has a critical point at $x=3 $, since \begin{align*} f(1)&= 0\\ f(3)&= \frac{-1}{9}\\ f(4)&=\frac{-3}{28} \end{align*} Then the maximum is $f(1)=0$ and the minimum is $f(3) =-1/9$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.