Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.2 Extreme Values - Exercises - Page 181: 33

Answer

The minimum value is $ f(2)=-128$ and the maximum value is $ f(-2)=128$

Work Step by Step

$ f'(z)=5z^{4}-80$ is differentiable everywhere. The critical points of the function are the solutions of $5z^{4}-80=0$. $5z^{4}-80=0$ when $ z=2$ or when $ z=-2$. The critical points of $ y $ are 2 and -2. We compare the values of the function at the critical points and the end points to obtain the maximum and minimum value. $ f(2)=(2)^{5}-80(2)=-128$ $ f(-2)=(-2)^{5}-80(-2)=128$ $ f(3)=(3)^{5}-80(3)=3$ $ f(-3)=(-3)^{5}-80(-3)=-3$ The minimum value is $ f(2)=-128$ and the maximum value is $ f(-2)=128$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.