Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 62

Answer

The dimensions of the box of maximum volume are $\left( {\frac{{2a}}{{\sqrt 3 }},\frac{{2b}}{{\sqrt 3 }},\frac{{2c}}{{\sqrt 3 }}} \right)$.

Work Step by Step

Referring to Figure 6, let $ \pm x$, $ \pm y$ and $ \pm z$ denote the vertices of the box. So, the volume of the box is given by $f\left( {x,y,z} \right) = \left( {2x} \right)\left( {2y} \right)\left( {2z} \right) = 8xyz$. Our task is to maximize the function $f\left( {x,y,z} \right)$ subject to the constraint $g\left( {x,y} \right) = {\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} + {\left( {\frac{z}{c}} \right)^2} - 1 = 0$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {8yz,8xz,8xy} \right) = \lambda \left( {\frac{{2x}}{{{a^2}}},\frac{{2y}}{{{b^2}}},\frac{{2z}}{{{c^2}}}} \right)$ So, the Lagrange equations are (1) ${\ \ \ }$ $8yz = \frac{{2\lambda x}}{{{a^2}}}$, ${\ \ }$ $8xz = \frac{{2\lambda y}}{{{b^2}}}$, ${\ \ }$ $8xy = \frac{{2\lambda z}}{{{c^2}}}$ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ Since $\left( {0,0,0} \right)$ does not satisfy the constraint, we have the following cases by examining equation (1): Case 1. $x=0$, $y=0$, $z \ne 0$ Substituting $x=0$, $y=0$ in the constraint gives $\frac{{{z^2}}}{{{c^2}}} = 1$ So, $z = \pm c$. The critical points are $\left( {0,0,c} \right)$ and $\left( {0,0, - c} \right)$. Case 2. $x=0$, $y \ne 0$, $z=0$ Substituting $x=0$, $z=0$ in the constraint gives $\frac{{{y^2}}}{{{b^2}}} = 1$ So, $y = \pm b$. The critical points are $\left( {0,b,0} \right)$ and $\left( {0, - b,0} \right)$. Case 3. $x \ne 0$, $y=0$, $z=0$ Substituting $y=0$, $z=0$ in the constraint gives $\frac{{{x^2}}}{{{a^2}}} = 1$ So, $x = \pm a$. The critical points are $\left( {a,0,0} \right)$ and $\left( { - a,0,0} \right)$. Case 4. $x \ne 0$, $y \ne 0$, $z \ne 0$ From equation (1), we obtain (2) ${\ \ \ \ }$ $\lambda = \frac{{4yz{a^2}}}{x} = \frac{{4xz{b^2}}}{y} = \frac{{4xy{c^2}}}{z}$ Step 3. Solve for $x$ and $y$ using the constraint From equation (2) we obtain $\frac{{4yz{a^2}}}{x} = \frac{{4xz{b^2}}}{y}$, ${\ \ \ }$ $\frac{{4yz{a^2}}}{x} = \frac{{4xy{c^2}}}{z}$ ${y^2} = \frac{{{b^2}}}{{{a^2}}}{x^2}$, ${\ \ \ \ }$ ${z^2} = \frac{{{c^2}}}{{{a^2}}}{x^2}$ So, $y = \pm \frac{b}{a}x$ and $z = \pm \frac{c}{a}x$. Substituting these in the constraint gives $\frac{{{x^2}}}{{{a^2}}} + \frac{{{x^2}}}{{{a^2}}} + \frac{{{x^2}}}{{{a^2}}} - 1 = 0$ $\frac{{3{x^2}}}{{{a^2}}} = 1$ So, $x = \pm \frac{a}{{\sqrt 3 }}$. Using $y = \pm \frac{b}{a}x$ and $z = \pm \frac{c}{a}x$, we obtain the critical points: $\left( {\frac{a}{{\sqrt 3 }},\frac{b}{{\sqrt 3 }},\frac{c}{{\sqrt 3 }}} \right)$, $\left( {\frac{a}{{\sqrt 3 }}, - \frac{b}{{\sqrt 3 }},\frac{c}{{\sqrt 3 }}} \right)$, $\left( {\frac{a}{{\sqrt 3 }},\frac{b}{{\sqrt 3 }}, - \frac{c}{{\sqrt 3 }}} \right)$, $\left( {\frac{a}{{\sqrt 3 }}, - \frac{b}{{\sqrt 3 }}, - \frac{c}{{\sqrt 3 }}} \right)$, $\left( { - \frac{a}{{\sqrt 3 }},\frac{b}{{\sqrt 3 }},\frac{c}{{\sqrt 3 }}} \right)$, $\left( { - \frac{a}{{\sqrt 3 }}, - \frac{b}{{\sqrt 3 }},\frac{c}{{\sqrt 3 }}} \right)$, $\left( { - \frac{a}{{\sqrt 3 }},\frac{b}{{\sqrt 3 }}, - \frac{c}{{\sqrt 3 }}} \right)$, $\left( { - \frac{a}{{\sqrt 3 }}, - \frac{b}{{\sqrt 3 }}, - \frac{c}{{\sqrt 3 }}} \right)$. Step 4. Calculate the critical values We evaluate the extreme values and list them in the following table: $\begin{array}{l} \begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y,z} \right)}\\ {\left( {0,0,c} \right)}&0\\ {\left( {0,0, - c} \right)}&0\\ {\left( {0,b,0} \right)}&0\\ {\left( {0, - b,0} \right)}&0\\ {\left( {a,0,0} \right)}&0\\ {\left( { - a,0,0} \right)}&0\\ {\left( {\frac{a}{{\sqrt 3 }},\frac{b}{{\sqrt 3 }},\frac{c}{{\sqrt 3 }}} \right)}&{\frac{{8abc}}{{3\sqrt 3 }}}\\ {\left( {\frac{a}{{\sqrt 3 }}, - \frac{b}{{\sqrt 3 }},\frac{c}{{\sqrt 3 }}} \right)}&{ - \frac{{8abc}}{{3\sqrt 3 }}} \end{array}\\ \begin{array}{*{20}{c}} {\left( {\frac{a}{{\sqrt 3 }},\frac{b}{{\sqrt 3 }}, - \frac{c}{{\sqrt 3 }}} \right)}&{ - \frac{{8abc}}{{3\sqrt 3 }}}\\ {\left( {\frac{a}{{\sqrt 3 }}, - \frac{b}{{\sqrt 3 }}, - \frac{c}{{\sqrt 3 }}} \right)}&{\frac{{8abc}}{{3\sqrt 3 }}}\\ {\left( { - \frac{a}{{\sqrt 3 }},\frac{b}{{\sqrt 3 }},\frac{c}{{\sqrt 3 }}} \right)}&{ - \frac{{8abc}}{{3\sqrt 3 }}}\\ {\left( { - \frac{a}{{\sqrt 3 }}, - \frac{b}{{\sqrt 3 }},\frac{c}{{\sqrt 3 }}} \right)}&{\frac{{8abc}}{{3\sqrt 3 }}} \end{array}\\ \begin{array}{*{20}{c}} {\left( { - \frac{a}{{\sqrt 3 }},\frac{b}{{\sqrt 3 }}, - \frac{c}{{\sqrt 3 }}} \right)}&{\frac{{8abc}}{{3\sqrt 3 }}}\\ {\left( { - \frac{a}{{\sqrt 3 }}, - \frac{b}{{\sqrt 3 }}, - \frac{c}{{\sqrt 3 }}} \right)}&{ - \frac{{8abc}}{{3\sqrt 3 }}} \end{array} \end{array}$ From the results in this table, we conclude that the maximum volume of a box inscribed in the ellipsoid is $\frac{{8abc}}{{3\sqrt 3 }}$, where the vertices of the box are $\left( { \pm x, \pm y, \pm z} \right) = \left( { \pm \frac{a}{{\sqrt 3 }}, \pm \frac{b}{{\sqrt 3 }}, \pm \frac{c}{{\sqrt 3 }}} \right)$. Hence, the dimensions of the box of maximum volume are $\left( {\frac{{2a}}{{\sqrt 3 }},\frac{{2b}}{{\sqrt 3 }},\frac{{2c}}{{\sqrt 3 }}} \right)$. As an illustration, please see the figure attached.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.