Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 40

Answer

$\frac{{\partial f}}{{\partial u}} = - 2v{{\rm{e}}^{u - v}}$ $\frac{{\partial f}}{{\partial v}} = 2\left( {v - 1} \right){{\rm{e}}^{u - v}}$

Work Step by Step

We have $f\left( {x,y} \right) = \left( {x - y} \right){{\rm{e}}^x}$, where $x=u-v$ and $y=u+v$. The partial derivatives are $\frac{{\partial f}}{{\partial x}} = {{\rm{e}}^x} + \left( {x - y} \right){{\rm{e}}^x} = \left( {1 + x - y} \right){{\rm{e}}^x}$, ${\ \ \ }$ $\frac{{\partial f}}{{\partial y}} = - {{\rm{e}}^x}$ $\frac{{\partial x}}{{\partial u}} = 1$, ${\ \ \ }$ $\frac{{\partial y}}{{\partial u}} = 1$ $\frac{{\partial x}}{{\partial v}} = - 1$, ${\ \ \ }$ $\frac{{\partial y}}{{\partial v}} = 1$ Using the Chain Rule, Eq. (2) and Eq. (3) of Section 15.6, we have $\frac{{\partial f}}{{\partial u}} = \frac{{\partial f}}{{\partial x}}\frac{{\partial x}}{{\partial u}} + \frac{{\partial f}}{{\partial y}}\frac{{\partial y}}{{\partial u}}$ $\frac{{\partial f}}{{\partial v}} = \frac{{\partial f}}{{\partial x}}\frac{{\partial x}}{{\partial v}} + \frac{{\partial f}}{{\partial y}}\frac{{\partial y}}{{\partial v}}$ So, (1) ${\ \ \ }$ $\frac{{\partial f}}{{\partial u}} = \left( {1 + x - y} \right){{\rm{e}}^x} - {{\rm{e}}^x} = \left( {x - y} \right){{\rm{e}}^x}$ (2) ${\ \ \ }$ $\frac{{\partial f}}{{\partial v}} = - \left( {1 + x - y} \right){{\rm{e}}^x} - {{\rm{e}}^x} = - \left( {2 + x - y} \right){{\rm{e}}^x}$ Since $x=u-v$ and $y=u+v$, we get $x-y=-2v$ Substituting $x=u-v$ and $x-y=-2v$ in equation (1) and (2) we obtain $\frac{{\partial f}}{{\partial u}}$ and $\frac{{\partial f}}{{\partial v}}$ in terms of $u$ and $v$: $\frac{{\partial f}}{{\partial u}} = - 2v{{\rm{e}}^{u - v}}$ $\frac{{\partial f}}{{\partial v}} = - \left( {2 - 2v} \right){{\rm{e}}^{u - v}} = 2\left( {v - 1} \right){{\rm{e}}^{u - v}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.