Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 59

Answer

The minimum of $f\left( {x,y,z} \right) = x + 2y + 3z$ is $2 - \frac{2}{{\sqrt 3 }}$ and the maximum is $2 + \frac{2}{{\sqrt 3 }}$ subject to the two constraints $x + y + z = 1$ and ${x^2} + {y^2} + {z^2} = 1$.

Work Step by Step

Our task is to find the extreme values of $f\left( {x,y,z} \right) = x + 2y + 3z$ subject to two constraints, $g\left( {x,y,z} \right) = x + y + z - 1 = 0$ and $h\left( {x,y,z} \right) = {x^2} + {y^2} + {z^2} - 1 = 0$. The Lagrange condition is $\nabla f = \lambda \nabla g + \mu \nabla h$ $\left( {1,2,3} \right) = \lambda \left( {1,1,1} \right) + \mu \left( {2x,2y,2z} \right)$ From the Lagrange condition we obtain three equations: (1) ${\ \ \ }$ $1 = \lambda + 2\mu x$, ${\ \ }$ $2 = \lambda + 2\mu y$, ${\ \ }$ $3 = \lambda + 2\mu z$ So, $\lambda = 1 - 2\mu x = 2 - 2\mu y = 3 - 2\mu z$. From here, we obtain $1 - 2\mu x = 2 - 2\mu y$, ${\ \ }$ $2 - 2\mu y = 3 - 2\mu z$, ${\ \ }$ $1 - 2\mu x = 3 - 2\mu z$ $2\mu \left( {y - x} \right) = 1$, ${\ \ \ }$ $2\mu \left( {z - y} \right) = 1$, ${\ \ \ }$ $2\mu \left( {z - x} \right) = 2$ Notice that $\mu $ cannot be zero, otherwise equation (1) does not have solutions. Thus, we can write $\mu = \frac{1}{{2\left( {y - x} \right)}} = \frac{1}{{2\left( {z - y} \right)}} = \frac{1}{{z - x}}$ From the first two equations on the right-hand side of $\mu $, we get $2\left( {y - x} \right) = 2\left( {z - y} \right)$ $y - x = z - y$ (2) ${\ \ \ \ }$ $x - 2y + z = 0$ We have from the constraint: (3) ${\ \ \ \ }$ $x + y + z = 1$ Subtracting equation (2) from equation (3) gives $3y = 1$. So, $y = \frac{1}{3}$. Substituting $y = \frac{1}{3}$ in equation (3) gives $x + \frac{1}{3} + z = 1$ $z = - x + \frac{2}{3}$ Substituting $y = \frac{1}{3}$ and $z = - x + \frac{2}{3}$ in $h\left( {x,y,z} \right) = {x^2} + {y^2} + {z^2} - 1 = 0$ gives ${x^2} + {\left( {\frac{1}{3}} \right)^2} + {\left( { - x + \frac{2}{3}} \right)^2} - 1 = 0$ $2{x^2} - \frac{{4x}}{3} - \frac{4}{9} = 0$ $9{x^2} - 6x - 2 = 0$ $x = \frac{{6 \pm \sqrt {{{\left( { - 6} \right)}^2} - 4\cdot9\cdot\left( { - 2} \right)} }}{{2\cdot9}} = \frac{{6 \pm \sqrt {108} }}{{18}} = \frac{{1 \pm \sqrt 3 }}{3}$ Using $y = \frac{1}{3}$ and $z = - x + \frac{2}{3}$, we obtain the critical points: $\left( {\frac{{1 + \sqrt 3 }}{3},\frac{1}{3},\frac{{1 - \sqrt 3 }}{3}} \right)$ and $\left( {\frac{{1 - \sqrt 3 }}{3},\frac{1}{3},\frac{{1 + \sqrt 3 }}{3}} \right)$. The extreme values corresponds to these critical points are listed in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y,z} \right)}\\ {\left( {\frac{{1 + \sqrt 3 }}{3},\frac{1}{3},\frac{{1 - \sqrt 3 }}{3}} \right)}&{2 - \frac{2}{{\sqrt 3 }} \simeq 0.85}\\ {\left( {\frac{{1 - \sqrt 3 }}{3},\frac{1}{3},\frac{{1 + \sqrt 3 }}{3}} \right)}&{2 + \frac{2}{{\sqrt 3 }} \simeq 3.15} \end{array}$ From these results we conclude that the minimum of $f\left( {x,y,z} \right) = x + 2y + 3z$ is $2 - \frac{2}{{\sqrt 3 }}$ and the maximum is $2 + \frac{2}{{\sqrt 3 }}$ subject to the two constraints $x + y + z = 1$ and ${x^2} + {y^2} + {z^2} = 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.