Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 53

Answer

The global minimum of $f$ is $f\left( { - 2,4} \right) = - 18$ and the global maximum is $f\left( {2,4} \right) = 10$.

Work Step by Step

We have $f\left( {x,y} \right) = 2xy - x - y$ and the domain $\left\{ {y \le 4,y \ge {x^2}} \right\}$. Step 1. Find the critical points on the domain and evaluate $f$ at these points The partial derivatives are ${f_x} = 2y - 1$, ${\ \ \ }$ ${f_y} = 2x - 1$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$. $2y-1=0$, ${\ \ \ }$ $2x-1=0$ So, there is a critical point at $\left( {\frac{1}{2},\frac{1}{2}} \right)$. The extreme value corresponding to this critical point is $f\left( {\frac{1}{2},\frac{1}{2}} \right) = - \frac{1}{2}$. Step 2. Check the boundaries 1. On the top edge of the domain, $y=4$ and $ - 2 \le x \le 2$. Write $g\left( x \right) = f\left( {x,4} \right) = 7x - 4$. Thus, at the top edge the minimum value of $f$ is $f\left( { - 2,4} \right) = - 18$ and the maximum value of $f$ is $f\left( {2,4} \right) = 10$. 2. On the left edge of the domain, $y = {x^2}$ and $ - 2 \le x \le 0$. Write $h\left( x \right) = f\left( {x,{x^2}} \right) = 2{x^3} - {x^2} - x$. Find the extreme values of $f$ on the left edge. The critical points of $h$ can be found by solving the equation $h'\left( x \right) = 0$. $h'\left( x \right) = 6{x^2} - 2x - 1 = 0$, ${\ \ \ }$ $h{\rm{''}}\left( x \right) = 12x - 2$ $x = \frac{{2 \pm \sqrt {{{\left( { - 2} \right)}^2} - 4\cdot6\cdot\left( { - 1} \right)} }}{{2\cdot6}} = \frac{{2 \pm \sqrt {28} }}{{12}} = \frac{{1 \pm \sqrt 7 }}{6}$ For $ - 2 \le x \le 0$, the critical point of $h$ is $x = \frac{{1 - \sqrt 7 }}{6} \simeq - 0.274$. Since $h{\rm{''}}\left( {\frac{{1 - \sqrt 7 }}{6}} \right) < 0$, $h\left( x \right)$ has a maximum at $x = \frac{{1 - \sqrt 7 }}{6}$. So, the maximum of $f$ along the left edge is $h\left( {\frac{{1 - \sqrt 7 }}{6}} \right) = f\left( {\frac{{1 - \sqrt 7 }}{6},{{\left( {\frac{{1 - \sqrt 7 }}{6}} \right)}^2}} \right) \simeq 0.158$. Since $h\left( x \right)$ has a maximum, the curve is concave down. Thus, for $ - 2 \le x \le 0$ the minimum of $f$ occurs at $x=-2$. So, the minimum of $f$ along the left edge is $h\left( { - 2} \right) = f\left( { - 2,4} \right) = - 18$. 3. On the right edge of the domain, $y = {x^2}$ and $0 \le x \le 2$. Write $m\left( x \right) = f\left( {x,{x^2}} \right) = 2{x^3} - {x^2} - x$. Find the extreme values of $f$ on the right edge. The critical points of $m$ can be found by solving the equation $m'\left( x \right) = 0$. $m'\left( x \right) = 6{x^2} - 2x - 1 = 0$, ${\ \ \ }$ $m{\rm{''}}\left( x \right) = 12x - 2$ $x = \frac{{2 \pm \sqrt {{{\left( { - 2} \right)}^2} - 4\cdot6\cdot\left( { - 1} \right)} }}{{2\cdot6}} = \frac{{2 \pm \sqrt {28} }}{{12}} = \frac{{1 \pm \sqrt 7 }}{6}$ For $0 \le x \le 2$, the critical point of $m$ is $x = \frac{{1 + \sqrt 7 }}{6} \simeq 0.608$. Since $m{\rm{''}}\left( {\frac{{1 + \sqrt 7 }}{6}} \right) > 0$, $m\left( x \right)$ has a minimum at $x = \frac{{1 + \sqrt 7 }}{6}$. So, the minimum of $f$ along the right edge is $m\left( {\frac{{1 + \sqrt 7 }}{6}} \right) = f\left( {\frac{{1 + \sqrt 7 }}{6},{{\left( {\frac{{1 + \sqrt 7 }}{6}} \right)}^2}} \right) \simeq - 0.528$. Since $m\left( x \right)$ has a minimum, the curve is concave up. Thus, for $0 \le x \le 2$ the maximum of $f$ occurs at $x=2$. So, the maximum of $f$ along the right edge is $m\left( 2 \right) = f\left( {2,4} \right) = 10$. The extrema on the edges are summarized in the following table: $\begin{array}{*{20}{c}} {}&{{\rm{Restriction{\ }of}}}\\ {{\bf{Edge}}}&{f\left( {x,y} \right){\rm{to{\ }Edge}}}\\ {Top:y = 4, - 2 \le x \le 2}&{g\left( x \right) = f\left( {x,4} \right) = 7{\rm{x}} - 4}\\ {Left:y = {x^2}, - 2 \le x \le 0}&{h\left( x \right) = f\left( {x,{x^2}} \right) = 2{x^3} - {x^2} - x}\\ {Right:y = {x^2},0 \le x \le 2}&{m\left( x \right) = f\left( {x,{x^2}} \right) = 2{x^3} - {x^2} - x} \end{array}\begin{array}{*{20}{c}} {{\rm{min{\ }of}}}&{{\rm{max{\ }of}}}\\ {{\rm{f{\ }on{\ }Edge}}}&{{\rm{f{\ }on{\ }Edge}}}\\ { - 18}&{10}\\ { - 18}&{0.158}\\ { - 0.528}&{10} \end{array}$ Step 3. Compare the results Comparing our results in Step 1 and Step 2, we conclude that the global minimum of $f$ is $f\left( { - 2,4} \right) = - 18$ and the global maximum is $f\left( {2,4} \right) = 10$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.