Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 48

Answer

$\begin{array}{*{20}{c}} {{\bf{Critical}}}&{}\\ {{\bf{Point}}}&{{\bf{Type}}}\\ {\left( {0,0} \right)}&{{\rm{saddle{\ }point}}}\\ {\left( {\frac{6}{{{{108}^{2/3}}}},\frac{1}{{{{108}^{1/3}}}}} \right) \simeq \left( {0.26,0.21} \right)}&{{\rm{local{\ }minimum}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = {x^3} + 2{y^3} - xy$. The partial derivatives are ${f_x} = 3{x^2} - y$, ${\ \ \ }$ ${f_y} = 6{y^2} - x$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = 3{x^2} - y = 0$ $y = 3{x^2}$ ${f_y} = 6{y^2} - x = 0$ $x = 6{y^2}$ Substituting $x = 6{y^2}$ in $y = 3{x^2}$ gives $y = 3{\left( {6{y^2}} \right)^2}$ $108{y^4} - y = 0$ $y\left( {108{y^3} - 1} \right) = 0$ $y = 0$, ${\ \ \ \ }$ $y = \frac{1}{{{{108}^{1/3}}}}$ Using $x = 6{y^2}$, we obtain the critical points: $\left( {0,0} \right)$ and $\left( {\frac{6}{{{{108}^{2/3}}}},\frac{1}{{{{108}^{1/3}}}}} \right) \simeq \left( {0.26,0.21} \right)$. The Second Derivative Test: We evaluate the second partial derivatives: ${f_{xx}} = 6x$, ${\ \ \ }$ ${f_{yy}} = 12y$, ${\ \ \ }$ ${f_{xy}} = - 1$ Using the Second Derivative Test, we determine the nature of the critical points and list the results in the following table: $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\bf{Discriminant}}}&{}\\ {{\bf{Point}}}&{6x}&{12y}&{ - 1}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\bf{Type}}}\\ {\left( {0,0} \right)}&0&0&{ - 1}&{ - 1}&{{\rm{saddle{\ }point}}}\\ {\left( {\frac{6}{{{{108}^{2/3}}}},\frac{1}{{{{108}^{1/3}}}}} \right)}&{\frac{{36}}{{{{108}^{2/3}}}}}&{\frac{{12}}{{{{108}^{1/3}}}}}&{ - 1}&3&{{\rm{local{\ }minimum}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.