Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 50

Answer

There are two types of critical points: 1. Type 1 critical points: $\left( {x,y} \right) = \left( {\frac{\pi }{3} - \frac{1}{2} + 2n\pi ,\frac{1}{2}} \right)$ for $n = 0,1,2,...$ These are are local maxima. 2. Type 2 critical points: $\left( {x,y} \right) = \left( { - \frac{\pi }{3} - \frac{1}{2} + 2n\pi ,\frac{1}{2}} \right)$ for $n = 0,1,2,...$ These are saddle points. As an illustration, please see the figure attached.

Work Step by Step

We have $f\left( {x,y} \right) = \sin \left( {x + y} \right) - \frac{1}{2}\left( {x + {y^2}} \right)$. The partial derivatives are ${f_x} = \cos \left( {x + y} \right) - \frac{1}{2}$, ${\ \ \ }$ ${f_y} = \cos \left( {x + y} \right) - y$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = \cos \left( {x + y} \right) - \frac{1}{2} = 0$ $\cos \left( {x + y} \right) = \frac{1}{2}$ ${f_y} = \cos \left( {x + y} \right) - y = 0$ $y = \cos \left( {x + y} \right)$ From these two equations we obtain $y = \frac{1}{2}$. Substituting $y = \frac{1}{2}$ in $\cos \left( {x + y} \right) = \frac{1}{2}$ gives $\cos \left( {x + \frac{1}{2}} \right) = \frac{1}{2}$ The solutions are $x + \frac{1}{2} = \pm \frac{\pi }{3} + 2n\pi $ for $n = 0,1,2,...$ So, there are two types of critical points: Type 1: ${\ \ \ \ }$ $\left( {x,y} \right) = \left( {\frac{\pi }{3} - \frac{1}{2} + 2n\pi ,\frac{1}{2}} \right)$ Type 2: ${\ \ \ \ }$ $\left( {x,y} \right) = \left( { - \frac{\pi }{3} - \frac{1}{2} + 2n\pi ,\frac{1}{2}} \right)$ for $n = 0,1,2,...$ The Second Derivative Test: We evaluate the second partial derivatives: ${f_{xx}} = - \sin \left( {x + y} \right)$, ${\ \ \ }$ ${f_{yy}} = - \sin \left( {x + y} \right) - 1$, ${\ \ \ }$ ${f_{xy}} = - \sin \left( {x + y} \right)$ The discriminant: $D = {f_{xx}}{f_{yy}} - {f_{xy}}^2$ $ = {\sin ^2}\left( {x + y} \right) + \sin \left( {x + y} \right) - {\sin ^2}\left( {x + y} \right)$ $ = \sin \left( {x + y} \right)$ We evaluate the second partial derivatives at the critical points: Type 1 critical points: $\left( {x,y} \right) = \left( {\frac{\pi }{3} - \frac{1}{2} + 2n\pi ,\frac{1}{2}} \right)$ for $n = 0,1,2,...$ ${f_{xx}} = - \sin \left( {x + y} \right)$ $ = - \sin \left( {\frac{\pi }{3} + 2n\pi } \right)$ $ = - \sin \left( {\frac{\pi }{3}} \right)\cos \left( {2n\pi } \right) - \cos \left( {\frac{\pi }{3}} \right)\sin \left( {2n\pi } \right)$ $ = - \sin \left( {\frac{\pi }{3}} \right)$ $ = - \frac{{\sqrt 3 }}{2}$ So, $D = \sin \left( {\frac{\pi }{3} + 2n\pi } \right) = \frac{{\sqrt 3 }}{2}$. Since $D>0$ and ${f_{xx}} < 0$, by the Second Derivative Test we conclude that type 1 critical points are local maxima. Type 2 critical points: $\left( {x,y} \right) = \left( { - \frac{\pi }{3} - \frac{1}{2} + 2n\pi ,\frac{1}{2}} \right)$ for $n = 0,1,2,...$ ${f_{xx}} = - \sin \left( {x + y} \right)$ $ = - \sin \left( { - \frac{\pi }{3} + 2n\pi } \right)$ $ = - \sin \left( { - \frac{\pi }{3}} \right)\cos \left( {2n\pi } \right) - \cos \left( { - \frac{\pi }{3}} \right)\sin \left( {2n\pi } \right)$ $ = - \sin \left( { - \frac{\pi }{3}} \right)$ $ = \frac{{\sqrt 3 }}{2}$ So, $D = \sin \left( { - \frac{\pi }{3} + 2n\pi } \right) = - \frac{{\sqrt 3 }}{2}$. Since $D<0$, by the Second Derivative Test we conclude that type 2 critical points are saddle points.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.