Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 54

Answer

The maximum value of $f\left( {x,y,z} \right) = xyz$ subject to the constraint $g\left( {x,y,z} \right) = 2x + y + 4z = 1$ is $\frac{1}{{216}}$.

Work Step by Step

We have $f\left( {x,y,z} \right) = xyz$ and the constraint $g\left( {x,y,z} \right) = 2x + y + 4z = 1$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {yz,xz,xy} \right) = \lambda \left( {2,1,4} \right)$ (1) ${\ \ \ \ }$ $yz = 2\lambda $, ${\ \ \ }$ $xz = \lambda $, ${\ \ \ }$ $xy = 4\lambda $ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ Since $\left( {0,0,0} \right)$ does not satisfy the constraint, we have the following cases: Case 1. $x=0$, $y=0$, $z \ne 0$. In this case $\lambda = 0$. Substituting $x=0$, $y=0$ in the constraint $g\left( {x,y,z} \right) = 2x + y + 4z - 1 = 0$ gives $z = \frac{1}{4}$. So, the critical point is $\left( {0,0,\frac{1}{4}} \right)$. Case 2. $x=0$, $y \ne 0$, $z=0$. In this case $\lambda = 0$. Substituting $x=0$, $z=0$ in the constraint $g\left( {x,y,z} \right) = 2x + y + 4z - 1 = 0$ gives $y=1$. So, the critical point is $\left( {0,1,0} \right)$. Case 3. $x \ne 0$, $y=0$, $z=0$. In this case $\lambda = 0$. Substituting $y=0$, $z=0$ in the constraint $g\left( {x,y,z} \right) = 2x + y + 4z - 1 = 0$ gives $x = \frac{1}{2}$. So, the critical point is $\left( {\frac{1}{2},0,0} \right)$. Case 4. $x \ne 0$, $y \ne 0$, $z \ne 0$. In this case $\lambda \ne 0$. From equation (1), we obtain $\lambda = \frac{{yz}}{2} = xz = \frac{{xy}}{4}$. So, we have $\frac{{yz}}{2} = xz$, ${\ \ \ \ }$ $xz = \frac{{xy}}{4}$ The first and the second equation give $y=2x$ and $z = \frac{1}{4}y$. Substituting $y=2x$ in $z = \frac{1}{4}y$ gives $z = \frac{1}{2}x$. Step 3. Solve for $x$ and $y$ using the constraint From Step 2, we obtain $y=2x$ and $z = \frac{1}{2}x$. Substituting these in the constraint $g\left( {x,y,z} \right)$ gives $2x + y + 4z - 1 = 0$ $2x + 2x + 2x = 1$ $x = \frac{1}{6}$ Using $y=2x$ and $z = \frac{1}{2}x$, we obtain the critical point: $\left( {\frac{1}{6},\frac{1}{3},\frac{1}{{12}}} \right)$. Step 4. Calculate the critical values We evaluate $f$ at the critical points and list them in the following table: $\begin{array}{*{20}{c}} {{\rm{Criticalpoints}}}&{f\left( {x,y,z} \right)}\\ {\left( {0,0,\frac{1}{4}} \right)}&0\\ {\left( {0,1,0} \right)}&0\\ {\left( {\frac{1}{2},0,0} \right)}&0\\ {\left( {\frac{1}{6},\frac{1}{3},\frac{1}{{12}}} \right)}&{\frac{1}{{216}}} \end{array}$ From this table we conclude that the maximum value of $f\left( {x,y,z} \right)$ on the constraint is $\frac{1}{{216}}$ and the minimum value is $0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.