Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 45

Answer

$\frac{{\partial z}}{{\partial x}} = - \frac{{{{\rm{e}}^z} - 1}}{{x{{\rm{e}}^z} + {{\rm{e}}^y}}}$

Work Step by Step

We are given $x{{\rm{e}}^z} + z{{\rm{e}}^y} = x + y$. Write $F\left( {x,y,z} \right) = x{{\rm{e}}^z} + z{{\rm{e}}^y} - x - y = 0$. So, $z$ is defined implicitly by $F\left( {x,y,z} \right) = 0$. The partial derivatives are ${F_x} = {{\rm{e}}^z} - 1$, ${\ \ \ }$ ${F_y} = z{{\rm{e}}^y} - 1$, ${\ \ \ }$ ${F_z} = x{{\rm{e}}^z} + {{\rm{e}}^y}$ Using Eq. (7) of Section 15.6, we get $\frac{{\partial z}}{{\partial x}} = - \frac{{{F_x}}}{{{F_z}}} = - \frac{{{{\rm{e}}^z} - 1}}{{x{{\rm{e}}^z} + {{\rm{e}}^y}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.