Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 55

Answer

The minimum value of $f\left( {x,y} \right)$ on the circle is $ - 2\sqrt {13} $ and the maximum value is $ 2\sqrt {13} $.

Work Step by Step

We have $f\left( {x,y} \right) = 3x - 2y$ and the constraint $g\left( {x,y} \right) = {x^2} + {y^2} - 4 = 0$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {3, - 2} \right) = \lambda \left( {2x,2y} \right)$ $3 = 2\lambda x$, ${\ \ \ \ }$ $ - 2 = 2\lambda y$ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ Since $\left( {0,0} \right)$ does not satisfy the constraint, we may assume that $x \ne 0$ and $y \ne 0$. From Step 1, we obtain $\lambda = \frac{3}{{2x}} = - \frac{1}{y}$. So $\lambda \ne 0$. Step 3. Solve for $x$ and $y$ using the constraint From Step 2, we obtain $y = - \frac{2}{3}x$. Substituting it in the constraint $g\left( {x,y} \right)$ gives ${x^2} + \frac{4}{9}{x^2} - 4 = 0$ $x = \pm \frac{6}{{\sqrt {13} }}$ So, the critical points are $\left( {\frac{6}{{\sqrt {13} }}, - \frac{4}{{\sqrt {13} }}} \right)$, $\left( { - \frac{6}{{\sqrt {13} }},\frac{4}{{\sqrt {13} }}} \right)$. Step 4. Calculate the critical values We evaluate $f$ at the critical points and list them in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical{\ }points}}}&{f\left( {x,y} \right)}\\ {\left( {\frac{6}{{\sqrt {13} }}, - \frac{4}{{\sqrt {13} }}} \right)}&{2\sqrt {13} }\\ {\left( { - \frac{6}{{\sqrt {13} }},\frac{4}{{\sqrt {13} }}} \right)}&{ - 2\sqrt {13} } \end{array}$ From this table we conclude that the minimum value of $f\left( {x,y} \right)$ on the circle is $ - 2\sqrt {13} $ and the maximum value is $ 2\sqrt {13} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.