Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 44

Answer

We prove that ${\left( {\frac{{\partial f}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial f}}{{\partial y}}} \right)^2} = 4u{\left( {\frac{{dg}}{{du}}} \right)^2}$

Work Step by Step

Let $f\left( {x,y} \right) = g\left( u \right)$, where $u = {x^2} + {y^2}$. The partial derivatives of $u$ are $\frac{{\partial u}}{{\partial x}} = 2x$, ${\ \ \ \ }$ $\frac{{\partial u}}{{\partial y}} = 2y$ Using the Chain Rule, Eq. (2) and Eq. (3) of Section 15.6, we have $\frac{{\partial f}}{{\partial x}} = \frac{{\partial f}}{{\partial u}}\frac{{\partial u}}{{\partial x}}$ $\frac{{\partial f}}{{\partial y}} = \frac{{\partial f}}{{\partial u}}\frac{{\partial u}}{{\partial y}}$ Since $f\left( {x,y} \right) = g\left( u \right)$, so $\frac{{\partial f}}{{\partial u}} = \frac{{dg}}{{du}}$. Thus, we obtain $\frac{{\partial f}}{{\partial x}} = \frac{{\partial f}}{{\partial u}}\frac{{\partial u}}{{\partial x}} = 2x\frac{{dg}}{{du}}$ $\frac{{\partial f}}{{\partial y}} = \frac{{\partial f}}{{\partial u}}\frac{{\partial u}}{{\partial y}} = 2y\frac{{dg}}{{du}}$ Evaluate ${\left( {\frac{{\partial f}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial f}}{{\partial y}}} \right)^2}$: ${\left( {\frac{{\partial f}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial f}}{{\partial y}}} \right)^2} = 4{x^2}{\left( {\frac{{dg}}{{du}}} \right)^2} + 4{y^2}{\left( {\frac{{dg}}{{du}}} \right)^2} = 4\left( {{x^2} + {y^2}} \right){\left( {\frac{{dg}}{{du}}} \right)^2}$ Since $u = {x^2} + {y^2}$, so ${\left( {\frac{{\partial f}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial f}}{{\partial y}}} \right)^2} = 4u{\left( {\frac{{dg}}{{du}}} \right)^2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.