Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 46

Answer

(a) $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{}\\ {{\bf{Point}}}&{{\bf{Type}}}\\ {\left( {0,3} \right)}&{{\rm{saddle{\ }point}}}\\ {\left( {1,3} \right)}&{{\rm{local{\ }minimum}}}\\ {\left( { - 1,3} \right)}&{{\rm{local{\ }minimum}}} \end{array}$ (b) the minimum value of $f$ is $-10$.

Work Step by Step

(a) We have $f\left( {x,y} \right) = {x^4} - 2{x^2} + {y^2} - 6y$. The partial derivatives are ${f_x} = 4{x^3} - 4x$, ${\ \ \ \ }$ ${f_y} = 2y - 6$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = 4{x^3} - 4x = 0$ $x\left( {{x^2} - 1} \right) = 0$ $x = 0$, ${\ \ \ \ }$ $x = \pm 1$ ${f_y} = 2y - 6 = 0$ $y = 3$ So, the critical points are $\left( {0,3} \right)$, $\left( {1,3} \right)$ and $\left( { - 1,3} \right)$. The Second Derivative Test: We evaluate the second partial derivatives: ${f_{xx}} = 12{x^2} - 4$, ${\ \ \ }$ ${f_{yy}} = 2$, ${\ \ \ }$ ${f_{xy}} = 0$ Using the Second Derivative Test, we determine the nature of the critical points and list the results in the following table: $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\bf{Discriminant}}}&{}\\ {{\bf{Point}}}&{12{x^2} - 4}&2&0&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\bf{Type}}}\\ {\left( {0,3} \right)}&{ - 4}&2&0&{ - 8}&{{\rm{saddle{\ }point}}}\\ {\left( {1,3} \right)}&8&2&0&{16}&{{\rm{local{\ }minimum}}}\\ {\left( { - 1,3} \right)}&8&2&0&{16}&{{\rm{local{\ }minimum}}} \end{array}$ (b) Notice that $f\left( {x,y} \right) = {x^4} - 2{x^2} + {y^2} - 6y$ can be written as $f\left( {x,y} \right) = {\left( {{x^2} - 1} \right)^2} - 1 + {\left( {y - 3} \right)^2} - 9$ $ = {\left( {{x^2} - 1} \right)^2} + {\left( {y - 3} \right)^2} - 10$ Since ${\left( {{x^2} - 1} \right)^2} \ge 0$ and ${\left( {y - 3} \right)^2} \ge 0$, we conclude that the minimum value of $f$ is $-10$. From the results in part (a) we know that the minimum occurs at the critical points: $\left( {1,3} \right)$ and $\left( { - 1,3} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.