Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 538: 69

Answer

$\mathop {\lim }\limits_{n \to \infty } {a_n} = 3$

Work Step by Step

For $n \ge 1$, we have ${a_n} = {\left( {{2^n} + {3^n}} \right)^{1/n}} \ge {\left( {{3^n}} \right)^{1/n}}$. So, ${a_n} \ge 3$ Since ${a_n} = {\left( {{2^n} + {3^n}} \right)^{1/n}} \le {\left( {{3^n} + {3^n}} \right)^{1/n}}$, so ${a_n} \le {\left( {2\cdot{3^n}} \right)^{1/n}}$ Hence, $3 \le {a_n} \le {\left( {2\cdot{3^n}} \right)^{1/n}} = {2^{1/n}}\cdot3$ Next, we evaluate $\mathop {\lim }\limits_{n \to \infty } {2^{1/n}}\cdot3$ $\mathop {\lim }\limits_{n \to \infty } {2^{1/n}}\cdot3 = 3\cdot\mathop {\lim }\limits_{n \to \infty } {2^{1/n}} = 3\cdot{2^0} = 3$ Since $\mathop {\lim }\limits_{n \to \infty } 3 = 3$ and $\mathop {\lim }\limits_{n \to \infty } {2^{1/n}}\cdot3 = 3$, by Squeeze Theorem we conclude that $\mathop {\lim }\limits_{n \to \infty } {a_n} = 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.