Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 538: 60

Answer

$\left\{ {{a_n}} \right\}$ diverges.

Work Step by Step

We have $\mathop {\lim }\limits_{n \to \infty } \frac{{3 - {4^n}}}{{2 + 7\cdot{3^n}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{3 - {4^n}}}{{2 + 7\cdot{3^n}}}\frac{{1/{3^n}}}{{1/{3^n}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{\frac{3}{{{3^n}}} - {{\left( {\frac{4}{3}} \right)}^n}}}{{\frac{2}{{{3^n}}} + 7}}$ $ = \mathop {\lim }\limits_{n \to \infty } \frac{{\frac{3}{{{3^n}}}}}{{\frac{2}{{{3^n}}} + 7}} - \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left( {\frac{4}{3}} \right)}^n}}}{{\frac{2}{{{3^n}}} + 7}} = \frac{{\mathop {\lim }\limits_{n \to \infty } \frac{3}{{{3^n}}}}}{{\mathop {\lim }\limits_{n \to \infty } \frac{2}{{{3^n}}} + 7}} - \frac{{\mathop {\lim }\limits_{n \to \infty } {{\left( {\frac{4}{3}} \right)}^n}}}{{\mathop {\lim }\limits_{n \to \infty } \frac{2}{{{3^n}}} + 7}} = \frac{0}{7} - \frac{\infty }{7} = - \infty $ So, $\left\{ {{a_n}} \right\}$ diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.