Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 538: 66

Answer

$\mathop {\lim }\limits_{n \to \infty } {n^2}\left( {\sqrt[3]{{{n^3} + 1}} - n} \right) = \frac{1}{3}$

Work Step by Step

We have $\mathop {\lim }\limits_{n \to \infty } {n^2}\left( {\sqrt[3]{{{n^3} + 1}} - n} \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{\sqrt[3]{{{n^3} + 1}} - n}}{{\frac{1}{{{n^2}}}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{n\left( {\sqrt[3]{{1 + \frac{1}{{{n^3}}}}} - 1} \right)}}{{\frac{1}{{{n^2}}}}}$ $\mathop {\lim }\limits_{n \to \infty } {n^2}\left( {\sqrt[3]{{{n^3} + 1}} - n} \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{\sqrt[3]{{1 + \frac{1}{{{n^3}}}}} - 1}}{{\frac{1}{{{n^3}}}}}$ Using L'Hôpital's Rule on the right-hand side, we get $\mathop {\lim }\limits_{n \to \infty } {n^2}\left( {\sqrt[3]{{{n^3} + 1}} - n} \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{\frac{1}{3}{{\left( {1 + \frac{1}{{{n^3}}}} \right)}^{ - 2/3}}\left( { - \frac{3}{{{n^4}}}} \right)}}{{ - \frac{3}{{{n^4}}}}} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{3}{\left( {1 + \frac{1}{{{n^3}}}} \right)^{ - 2/3}}$ So, $\mathop {\lim }\limits_{n \to \infty } {n^2}\left( {\sqrt[3]{{{n^3} + 1}} - n} \right) = \frac{1}{3}\mathop {\lim }\limits_{n \to \infty } \frac{1}{{{{\left( {1 + \frac{1}{{{n^3}}}} \right)}^{2/3}}}} = \frac{1}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.