Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 538: 68

Answer

$\mathop {\lim }\limits_{n \to \infty } {c_n} = 1$

Work Step by Step

For $n \ge 1$, we have $\frac{1}{{\sqrt {{n^2} + 1} }} > \frac{1}{{\sqrt {{n^2} + 2} }} > ... > \frac{1}{{\sqrt {{n^2} + n} }}$. Therefore, ${c_n} = \frac{1}{{\sqrt {{n^2} + 1} }} + \frac{1}{{\sqrt {{n^2} + 2} }} + ... + \frac{1}{{\sqrt {{n^2} + n} }} \ge n\cdot\left( {\frac{1}{{\sqrt {{n^2} + n} }}} \right)$ So, ${c_n} \ge \frac{n}{{\sqrt {{n^2} + n} }}$ Since $\frac{1}{{\sqrt {{n^2} + 1} }} > \frac{1}{{\sqrt {{n^2} + 2} }} > ... > \frac{1}{{\sqrt {{n^2} + n} }}$, we have $n\cdot\left( {\frac{1}{{\sqrt {{n^2} + 1} }}} \right) \ge {c_n} = \frac{1}{{\sqrt {{n^2} + 1} }} + \frac{1}{{\sqrt {{n^2} + 2} }} + ... + \frac{1}{{\sqrt {{n^2} + n} }}$ So, $\frac{n}{{\sqrt {{n^2} + 1} }} \ge {c_n}$ Hence, $\frac{n}{{\sqrt {{n^2} + n} }} \le {c_n} \le \frac{n}{{\sqrt {{n^2} + 1} }}$ Next we evaluate $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + n} }}$ and $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + 1} }}$. $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + n} }} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{{\sqrt {1 + \frac{1}{n}} }} = 1$ $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + 1} }} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{{\sqrt {1 + \frac{1}{{{n^2}}}} }} = 1$ Since $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + n} }} = 1$ and $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + 1} }} = 1$, by Squeeze Theorem we conclude that $\mathop {\lim }\limits_{n \to \infty } {c_n} = 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.