Answer
$\mathop {\lim }\limits_{n \to \infty } {c_n} = 1$
Work Step by Step
For $n \ge 1$, we have $\frac{1}{{\sqrt {{n^2} + 1} }} > \frac{1}{{\sqrt {{n^2} + 2} }} > ... > \frac{1}{{\sqrt {{n^2} + n} }}$. Therefore,
${c_n} = \frac{1}{{\sqrt {{n^2} + 1} }} + \frac{1}{{\sqrt {{n^2} + 2} }} + ... + \frac{1}{{\sqrt {{n^2} + n} }} \ge n\cdot\left( {\frac{1}{{\sqrt {{n^2} + n} }}} \right)$
So,
${c_n} \ge \frac{n}{{\sqrt {{n^2} + n} }}$
Since $\frac{1}{{\sqrt {{n^2} + 1} }} > \frac{1}{{\sqrt {{n^2} + 2} }} > ... > \frac{1}{{\sqrt {{n^2} + n} }}$, we have
$n\cdot\left( {\frac{1}{{\sqrt {{n^2} + 1} }}} \right) \ge {c_n} = \frac{1}{{\sqrt {{n^2} + 1} }} + \frac{1}{{\sqrt {{n^2} + 2} }} + ... + \frac{1}{{\sqrt {{n^2} + n} }}$
So,
$\frac{n}{{\sqrt {{n^2} + 1} }} \ge {c_n}$
Hence,
$\frac{n}{{\sqrt {{n^2} + n} }} \le {c_n} \le \frac{n}{{\sqrt {{n^2} + 1} }}$
Next we evaluate $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + n} }}$ and $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + 1} }}$.
$\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + n} }} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{{\sqrt {1 + \frac{1}{n}} }} = 1$
$\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + 1} }} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{{\sqrt {1 + \frac{1}{{{n^2}}}} }} = 1$
Since $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + n} }} = 1$ and $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{\sqrt {{n^2} + 1} }} = 1$, by Squeeze Theorem we conclude that $\mathop {\lim }\limits_{n \to \infty } {c_n} = 1$.