Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 538: 63

Answer

$0$

Work Step by Step

When $\lim\limits_{x \to \infty} f(x)$ exists, then the sequence $a_n=f(n)$ converges to the same limit, so we have: $ \lim\limits_{n \to \infty} a_n=\lim\limits_{x \to \infty} f(x)$ Now, $ \lim\limits_{n \to \infty} a_n=\lim\limits_{x \to \infty} \dfrac{(\ln x )^2}{x} \\=\lim\limits_{x \to \infty} \dfrac{\sin (\pi/x)}{1/x}$ We see that this limit shows the indefinite form of $\dfrac{\infty}{\infty}$, so we apply L-Hopital's rule. Thus, $ \lim\limits_{n \to \infty} a_n =2 \lim\limits_{x \to \infty} \dfrac{\ln x }{x} \\=\lim\limits_{x \to \infty}\dfrac{1}{x} \\=0 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.