Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 538: 42

Answer

By the Squeeze Theorem (Theorem 3): $\mathop {\lim }\limits_{n \to \infty } \frac{{{8^{2n}}}}{{n!}} = 0$.

Work Step by Step

Write ${a_n} = \frac{{{8^{2n}}}}{{n!}} = \frac{{{{64}^n}}}{{n!}}$. Similar method to Exercise 41, for $n>64$, we write $\frac{{{{64}^n}}}{{n!}}$ as a product of $n$ factors: $\frac{{{{64}^n}}}{{n!}} = \left( {\frac{{64}}{1}\cdot\frac{{64}}{2}\cdot...\cdot\frac{{64}}{{64}}} \right)\left( {\frac{{64}}{{65}}\cdot\frac{{64}}{{66}}\cdot...\cdot\frac{{64}}{n}} \right)$. Since $\frac{{{{64}^n}}}{{n!}} \ge 0$ and $\frac{{64}}{1}\cdot\frac{{64}}{2}\cdot...\cdot\frac{{64}}{{64}} = \frac{{{{64}^{64}}}}{{64!}}$, we have $0 \le \frac{{{{64}^n}}}{{n!}} = \frac{{{{64}^{64}}}}{{64!}}\left( {\frac{{64}}{{65}}\cdot\frac{{64}}{{66}}\cdot...\cdot\frac{{64}}{n}} \right)$. Since $\frac{{64}}{{65}},\frac{{64}}{{66}},...$ are all less than 1, so $\frac{{{{64}^{64}}}}{{64!}}\left( {\frac{{64}}{{65}}\cdot\frac{{64}}{{66}}\cdot...\cdot\frac{{64}}{n}} \right) \le \frac{{{{64}^{64}}}}{{64!}}\left( {\frac{{64}}{n}} \right)$. Therefore, $0 \le \frac{{{{64}^n}}}{{n!}} = \frac{{{{64}^{64}}}}{{64!}}\left( {\frac{{64}}{{65}}\cdot\frac{{64}}{{66}}\cdot...\cdot\frac{{64}}{n}} \right) \le \frac{{{{64}^{64}}}}{{64!}}\frac{{64}}{n}$. Since $\frac{{{{64}^{64}}}}{{64!}}$ is a constant and $\mathop {\lim }\limits_{n \to \infty } \frac{{64}}{n} = 0$, the Squeeze Theorem (Theorem 3) gives us $\mathop {\lim }\limits_{n \to \infty } \frac{{{8^{2n}}}}{{n!}} = 0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.