Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 538: 41

Answer

By the Squeeze Theorem (Theorem 3): $\mathop {\lim }\limits_{n \to \infty } \frac{{{9^n}}}{{n!}} = 0$.

Work Step by Step

For $n>9$, we write $\frac{{{9^n}}}{{n!}}$ as a product of $n$ factors: $\frac{{{9^n}}}{{n!}} = \left( {\frac{9}{1}\cdot\frac{9}{2}\cdot...\cdot\frac{9}{9}} \right)\left( {\frac{9}{{10}}\cdot\frac{9}{{11}}\cdot...\cdot\frac{9}{n}} \right)$. Since $\frac{{{9^n}}}{{n!}} \ge 0$ and $\frac{9}{1}\cdot\frac{9}{2}\cdot...\cdot\frac{9}{9} = \frac{{{9^9}}}{{9!}}$, we have $0 \le \frac{{{9^n}}}{{n!}} = \frac{{{9^9}}}{{9!}}\left( {\frac{9}{{10}}\cdot\frac{9}{{11}}\cdot...\cdot\frac{9}{n}} \right)$. Since $\frac{9}{{10}},\frac{9}{{11}},...$ are all less than 1, so $\frac{{{9^9}}}{{9!}}\left( {\frac{9}{{10}}\cdot\frac{9}{{11}}\cdot...\cdot\frac{9}{n}} \right) \le \frac{{{9^9}}}{{9!}}\left( {\frac{9}{n}} \right)$. Therefore, $0 \le \frac{{{9^n}}}{{n!}} = \frac{{{9^9}}}{{9!}}\left( {\frac{9}{{10}}\cdot\frac{9}{{11}}\cdot...\cdot\frac{9}{n}} \right) \le \frac{{{9^9}}}{{9!}}\cdot\frac{9}{n}$. Since $\frac{{{9^9}}}{{9!}}$ is a constant and $\mathop {\lim }\limits_{n \to \infty } \frac{9}{n} = 0$, the Squeeze Theorem (Theorem 3) gives us $\mathop {\lim }\limits_{n \to \infty } \frac{{{9^n}}}{{n!}} = 0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.