Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 538: 56

Answer

$\left\{ {{b_n}} \right\}$ diverges.

Work Step by Step

We have $\mathop {\lim }\limits_{n \to \infty } {b_n} = \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left( { - 1} \right)}^n}{n^3} + {2^{ - n}}}}{{3{n^3} + {4^{ - n}}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left( { - 1} \right)}^n}{n^3} + {2^{ - n}}}}{{3{n^3} + {4^{ - n}}}}\frac{{1/{n^3}}}{{1/{n^3}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left( { - 1} \right)}^n} + {2^{ - n}}/{n^3}}}{{3 + {4^{ - n}}/{n^3}}}$ $\mathop {\lim }\limits_{n \to \infty } {b_n} = \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left( { - 1} \right)}^n} + \frac{1}{{{2^n}{n^3}}}}}{{3 + \frac{1}{{{4^n}{n^3}}}}} = \mathop {\lim }\limits_{n \to \infty } \left( {\frac{{{{\left( { - 1} \right)}^n}}}{{3 + \frac{1}{{{4^n}{n^3}}}}} + \frac{{\frac{1}{{{2^n}{n^3}}}}}{{3 + \frac{1}{{{4^n}{n^3}}}}}} \right) = \mathop {\lim }\limits_{n \to \infty } \left( {\frac{{{{\left( { - 1} \right)}^n}}}{{3 + \frac{1}{{{4^n}{n^3}}}}}} \right) + 0$ $\mathop {\lim }\limits_{n \to \infty } {b_n} = \mathop {\lim }\limits_{n \to \infty } \left( {\frac{{{{\left( { - 1} \right)}^n}}}{{3 + \frac{1}{{{4^n}{n^3}}}}}} \right)$ Since the term on the right-hand side bounce back and forth with positive and negative values but never settle down to approach a limit, so $\left\{ {{b_n}} \right\}$ diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.