Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 538: 34

Answer

By limit definition: $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{n + {n^{ - 1}}}} = 1$

Work Step by Step

The limit definition requires us to find, for every $\varepsilon > 0$, a number $M$ such that (1) ${\ \ \ \ \ }$ $\left| {\frac{n}{{n + {n^{ - 1}}}} - 1} \right| < \varepsilon $ ${\ \ }$ for all $n>M$. We have $\left| {\frac{{n - n - {n^{ - 1}}}}{{n + {n^{ - 1}}}}} \right| < \varepsilon $, $\left| {\frac{{ - {n^{ - 1}}}}{{n + {n^{ - 1}}}}} \right| < \varepsilon $, $\left| {\frac{{ - 1}}{{{n^2} + 1}}} \right| < \varepsilon $, $\frac{1}{{{n^2} + 1}} < \varepsilon $, ${n^2} > \frac{1}{\varepsilon } - 1$, $n > \sqrt {\frac{1}{\varepsilon } - 1} $. We can choose $\varepsilon > 0$ and $M = \sqrt {\frac{1}{\varepsilon } - 1} $ so that equation (1) is valid. By limit definition, this proves that $\mathop {\lim }\limits_{n \to \infty } \frac{n}{{n + {n^{ - 1}}}} = 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.