Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 538: 59

Answer

$\mathop {\lim }\limits_{n \to \infty } \frac{{3 - {4^n}}}{{2 + 7\cdot{4^n}}} = - \frac{1}{7}$

Work Step by Step

We have $\mathop {\lim }\limits_{n \to \infty } \frac{{3 - {4^n}}}{{2 + 7\cdot{4^n}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{3 - {4^n}}}{{2 + 7\cdot{4^n}}}\frac{{1/{4^n}}}{{1/{4^n}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{\frac{3}{{{4^n}}} - 1}}{{\frac{2}{{{4^n}}} + 7}}$. By (iii) and (iv) of Theorem 2 we get $\mathop {\lim }\limits_{n \to \infty } \frac{{\frac{3}{{{4^n}}} - 1}}{{\frac{2}{{{4^n}}} + 7}} = \frac{{\mathop {\lim }\limits_{n \to \infty } \frac{3}{{{4^n}}} - \mathop {\lim }\limits_{n \to \infty } 1}}{{\mathop {\lim }\limits_{n \to \infty } \frac{2}{{{4^n}}} + \mathop {\lim }\limits_{n \to \infty } 7}} = \frac{{3\mathop {\lim }\limits_{n \to \infty } \frac{1}{{{4^n}}} - \mathop {\lim }\limits_{n \to \infty } 1}}{{2\mathop {\lim }\limits_{n \to \infty } \frac{1}{{{4^n}}} + \mathop {\lim }\limits_{n \to \infty } 7}} = - \frac{1}{7}$. So, $\mathop {\lim }\limits_{n \to \infty } \frac{{3 - {4^n}}}{{2 + 7\cdot{4^n}}} = - \frac{1}{7}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.