Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 76

Answer

$$\eqalign{ & {\text{Trapezoidal Rule}} \approx 6.2461 \cr & {\text{Simpson's Rule}} \approx 6.4615 \cr & {\text{Graphing utility}} \approx 6.4377 \cr} $$

Work Step by Step

$$\eqalign{ & \int_0^4 {\frac{{8x}}{{{x^2} + 4}}} dx \cr & {\text{For }}n = 4,{\text{ }}\Delta x = \frac{{b - a}}{n} = \frac{{4 - 0}}{4} = 1,{\text{ then,}} \cr & {x_0} = 0,{\text{ }}{x_1} = 1,{\text{ }}{x_2} = 2,{\text{ }}{x_3} = 3,{\text{ }}{x_4} = 4 \cr & \cr & {\text{*Using the trapezoidal Rule }}\left( {{\text{THEOREM 4}}{\text{.17}}} \right) \cr & \int_a^b {f\left( x \right)} dx \approx \frac{{b - a}}{{2n}}\left[ {f\left( {{x_0}} \right) + 2f\left( {{x_1}} \right) + \cdots 2f\left( {{x_{n - 1}}} \right) + f\left( {{x_n}} \right)} \right] \cr & \int_0^4 {\frac{{8x}}{{{x^2} + 4}}} dx = \frac{1}{2}\left[ {\frac{{8\left( 0 \right)}}{{{{\left( 0 \right)}^2} + 4}} + \frac{{16\left( 1 \right)}}{{{{\left( 1 \right)}^2} + 4}} + \frac{{16\left( 2 \right)}}{{{{\left( 2 \right)}^2} + 4}}} \right] \cr & {\text{ }} + \frac{1}{2}\left[ {\frac{{16\left( 3 \right)}}{{{{\left( 3 \right)}^2} + 4}} + \frac{{8\left( 4 \right)}}{{{{\left( 4 \right)}^2} + 4}}} \right] \cr & {\text{Simplifying}} \cr & \int_0^4 {\frac{{8x}}{{{x^2} + 4}}} dx \approx 6.2461 \cr & \cr & {\text{*Using Simpson's Rule }}\left( {{\text{THEOREM 4}}{\text{.19}}} \right) \cr & \int_a^b {f\left( x \right)} dx \approx \frac{{b - a}}{{3n}}\left[ {f\left( {{x_0}} \right) + 4f\left( {{x_1}} \right) + 2f\left( {{x_2}} \right) + 4f\left( {{x_3}} \right) + \cdots } \right. \cr & \left. {{\text{ }} + 4f\left( {{x_{n - 1}}} \right) + f\left( {{x_n}} \right)} \right] \cr & \int_0^4 {\frac{{8x}}{{{x^2} + 4}}} dx = \frac{1}{3}\left[ {\frac{{8\left( 0 \right)}}{{{{\left( 0 \right)}^2} + 4}} + \frac{{32\left( 1 \right)}}{{{{\left( 1 \right)}^2} + 4}} + \frac{{16\left( 2 \right)}}{{{{\left( 2 \right)}^2} + 4}}} \right] \cr & {\text{ }} + \frac{1}{3}\left[ {\frac{{32\left( 3 \right)}}{{{{\left( 3 \right)}^2} + 4}} + \frac{{8\left( 4 \right)}}{{{{\left( 4 \right)}^2} + 4}}} \right] \cr & {\text{Simplifying}} \cr & \int_1^5 {\frac{{12}}{x}} dx \approx 6.4615 \cr & \cr & {\text{Using a graphing utility we obtain}} \cr & \int_0^4 {\frac{{8x}}{{{x^2} + 4}}} dx \approx 6.4377 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.