Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 53

Answer

$-\ln 3\approx-1.099$ check with desmos online calculator:

Work Step by Step

Find the indefinite integral first, $x^{2}-2=(x^{2}-1)-1,$ $\displaystyle \frac{x^{2}-2}{x+1}=\frac{(x^{2}-1)-1}{x+1}=\frac{(x^{2}-1)}{x+1}-\frac{1}{x+1}=\frac{(x+1)(x-1)}{x+1}-\frac{1}{x+1}=$ $=x-1-\displaystyle \frac{1}{x+1}, \ \ \ $so $\displaystyle \int\frac{x^{2}-2}{x+1}dx=\int(x-1-\frac{1}{x+1})dx$ $=\displaystyle \frac{1}{2}x^{2}-x-\ln|x+1|+C$ Now, the definite integral: $\displaystyle \int_{0}^{2}\frac{x^{2}-2}{x+1}dx=\left[\frac{1}{2}x^{2}-x-\ln|x+1|\right]_{0}^{2}$ $=\displaystyle \frac{1}{2}\cdot 4-2-\ln 3-(0-0-\ln 1)$ $=-\ln 3\approx-1.099$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.