Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 71

Answer

$\displaystyle \frac{15}{2}+8\ln 2$

Work Step by Step

$A=\displaystyle \int_{a}^{b}f(x)dx$ $A=\displaystyle \int_{1}^{4}\frac{x^{2}+4}{x}dx=\int_{1}^{4}\frac{x^{2}}{x}dx+\int_{1}^{4}\frac{4}{x}dx$ $=\displaystyle \int_{1}^{4}xdx+4\int_{1}^{4}\frac{1}{x}dx$ $=\left[\frac{x^{2}}{2}\right]_{1}^{4}+4\left[\ln x\right]_{1}^{4}$ $=\displaystyle \frac{4^{2}}{2}-\frac{1^{2}}{2}+4(\ln 4-\ln 1)$ $=\displaystyle \frac{15}{2}+4\ln 2^{2}$ $=\displaystyle \frac{15}{2}+8\ln 2$ Verified with online calculator (desmos.com):
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.