Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 69

Answer

$\displaystyle \frac{\ln 2}{2}$

Work Step by Step

$A=\displaystyle \int_{a}^{b}f(x)dx$ $A=\displaystyle \int_{0}^{\pi/4}\tan xdx$ ... (see: integrals of the six basic trig. functions, p.333) $A=\displaystyle \left[-\ln|\cos x|\right]_{0}^{\pi/4}=-[\ln|\cos\frac{\pi}{4}|-\ln|\cos 0|]$ $=-(\displaystyle \ln\frac{\sqrt{2}}{2}-\ln 1)$ $=-\displaystyle \ln(\frac{2^{1/2}}{2})=-\ln 2^{-1/2}=-(\frac{-1}{2})\ln 2$ $=\displaystyle \frac{\ln 2}{2}$ Verified with online calculator (desmos.com):
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.