Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 52

Answer

$\ln 2\approx 0.693$ check with desmos online calculator:

Work Step by Step

Find the indefinite integral first, $\displaystyle \int\frac{\mathrm{l}}{x\ln x}dx=\int(\frac{1}{\ln x})\frac{1}{x}dx$ $\left[\begin{array}{l} u=\ln x\\ du=\frac{1}{x}dx \end{array}\right]$ $=\ln|u|+C$ $=\ln|\ln x|+C$ Now, the definite integral: $\displaystyle \int_{e}^{e^{2}}\frac{\mathrm{l}}{x\ln x}dx=[\ln|\ln|x||]_{e}^{e^{2}}$ $=\ln|\ln e^{2}|-\ln|\ln e|$ $=\ln 2-\ln 1$ $=\ln 2\approx 0.693$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.