Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 51

Answer

$\displaystyle \frac{7}{3}$ check with desmos online calculator:

Work Step by Step

Find the indefinite integral first, $\displaystyle \int\frac{(1+\ln x)^{2}}{x}dx=\left[\begin{array}{l} u=1+\ln x\\ du=\frac{1}{x}dx \end{array}\right]$ $=\displaystyle \int u^{2}du=\frac{u^{3}}{3}+C$ $=\displaystyle \frac{1}{3}(1+\ln x)^{3}+C$ Now, the definite integral: $\displaystyle \int_{1}^{e}\frac{(1+\ln x)^{2}}{x}dx=[\frac{1}{3}(1+\ln x)^{3}]_{1}^{e}$ $=\displaystyle \frac{1}{3}[1+\ln e)^{3}-(1+\ln 1)^{3}]$ $= \displaystyle \frac{1}{3}(8-1) =\frac{7}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.