Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 68

Answer

$2\ln 2$

Work Step by Step

$A=\displaystyle \int_{a}^{b}f(x)dx$ $A=2\displaystyle \int_{2}^{4}\frac{1}{x\ln x}dx=$ ... find an antiderivative (the indefinite integral) $\left[\begin{array}{l} u=\ln x\\ du=\frac{1}{x}dx \end{array}\right]$ $\displaystyle \int\frac{1}{x\ln x}dx=\int\frac{1}{u}du=\ln|u|+C=\ln|\ln x|+C$ $A=2\displaystyle \int_{2}^{4}\frac{1}{x\ln x}dx=2[\ln|\ln x|]_{2}^{4}$ $=2[\ln|\ln 4|-\ln|\ln 2|]\quad$ .. quotient rule... $=2[\displaystyle \ln(\frac{\ln 4}{\ln 2})]\quad $ ... $\ln 4=\ln 2^{2}=2\ln 2$ ... $A=2\displaystyle \ln(\frac{2\ln 2}{\ln 2})$ $A=2\ln 2$ Verified with online calculator (desmos.com):
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.