Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 72

Answer

$5\ln 3$

Work Step by Step

$A=\displaystyle \int_{a}^{b}f(x)dx$ $A=\displaystyle \int_{1}^{5}\frac{5x}{x^{2}+2}dx=$ Find the indefinite integral... $\displaystyle \int\frac{5x}{x^{2}+2}dx=\left[\begin{array}{ll} u=x^{2}+2 & \\ du=2xdx & \frac{du}{2}=dx \end{array}\right]=\displaystyle \frac{5}{2}\int\frac{du}{u}$ $=\displaystyle \frac{5}{2}\ln|u|+C=\frac{5}{2}\ln|x^{2}+2|+C$ $A=\displaystyle \frac{5}{2}[\ln|x^{2}+2|]_{1}^{5}=$ $A=\displaystyle \frac{5}{2}[\ln 27-\ln 3]=\frac{5}{2}\ln\frac{27}{3}$ $=\displaystyle \frac{5}{2}\ln 9=\frac{5}{2}\ln 3^{2}$ $=\displaystyle \frac{5}{2}\cdot 2\ln 3$ $=5\ln 3$ Verified with online calculator (desmos.com):
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.