Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 66

Answer

$F^{\prime}(x)=\displaystyle \frac{2}{x}$

Work Step by Step

Use the Second Fundamental Theorem of Calculus (Th 4.11) $\displaystyle \frac{d}{dx}\left[\int_{a}^{x}f(t)dt\right] =f(x)$ Here, $F(x)$=$\displaystyle \int_{1}^{x^{2}}f(t)dt,\qquad$ f(t) $=\displaystyle \frac{1}{t}, a=1$ With the substitution $u=x^{2}, \displaystyle \frac{du}{dx}=2x,$ we apply the chain rule $F^{\prime}(x)=\displaystyle \frac{dF}{du}\cdot\frac{du}{dx}$ $=\displaystyle \frac{d}{du}\left[\int_{1}^{u}f(t)\right]\cdot 2x$ $=f(u)\cdot 2x$ $=\displaystyle \frac{1}{u}\cdot 2x$ $=\displaystyle \frac{1}{x^{2}}\cdot 2x$ $=\displaystyle \frac{2}{x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.