Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 70

Answer

$\ln(3+2\sqrt{2})$

Work Step by Step

$A=\displaystyle \int_{a}^{b}f(x)dx$ $A=\displaystyle \int_{\pi/4}^{3\pi/4}\frac{\sin x}{1+\cos x}dx$ ... Find an antiderivative (evaluate the indefinite integral) $\left[\begin{array}{l} u=1+\cos x\\ du=-\sin x \end{array}\right]$ $\displaystyle \int_{ }^{ }\frac{\sin x}{1+\cos x}dx=\int_{ }^{ }\frac{-1}{u}dx$ $=-\ln|u|+C=-\ln|1+\cos x|+C$ $A=[-\ln|1+\cos x|]_{\pi/4}^{3\pi/4}=$ $=-\displaystyle \ln|1+\cos\frac{3\pi}{4}|+\ln|1+\cos\frac{\pi}{4}|$ $=-\displaystyle \ln|1-\frac{\sqrt{2}}{2}|+\ln|1+\frac{\sqrt{2}}{2}|$ ... quotient rule ... $=\ln\left(\dfrac{\frac{2+\sqrt{2}}{2}}{\frac{2-\sqrt{2}}{2}}\right)=$ $=\displaystyle \ln\frac{2+\sqrt{2}}{2-\sqrt{2}}$ $\displaystyle \frac{2+\sqrt{2}}{2-\sqrt{2}}\cdot\frac{2+\sqrt{2}}{2+\sqrt{2}} =\displaystyle \frac{4+2\cdot 2\cdot\sqrt{2}+2}{4-2}=\frac{6+4\sqrt{2}}{2}=3+2\sqrt{2}$ $A=\ln(3+2\sqrt{2})$ Verified with online calculator (desmos.com):
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.