Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 55

Answer

$\displaystyle \ln\left|\frac{2-\sin 2}{1-\sin 1}\right|\approx 1.929$ check with desmos online calculator:

Work Step by Step

Find the indefinite integral first, $\displaystyle \int\frac{1-\cos\theta}{\theta-\sin\theta}d\theta=\left[\begin{array}{l} u=\theta-\sin\theta\\ du=(1-\cos\theta)d\theta \end{array}\right]$ $=\displaystyle \int\frac{1}{u}du=\ln|u|$ $=\ln|\theta-\sin\theta|+C$ Now, the definite integral: $\displaystyle \int_{1}^{2}\frac{1-\cos\theta}{\theta-\sin\theta}d\theta=[\ln|\theta-\sin\theta|]_{1}^{2}$ $=\ln|2-\sin 2|-\ln|1-\sin 1|$ $=\displaystyle \ln\left|\frac{2-\sin 2}{1-\sin 1}\right|\approx 1.929$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.