Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 522: 50

Answer

$$\frac{1}{{2a}}\ln \left| {\frac{{a - x}}{{a + x}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{{a^2} - {x^2}}}} dx \cr & {\text{Decompose the integrand into partial practions}} \cr & \frac{1}{{{a^2} - {x^2}}} = \frac{1}{{\left( {a + x} \right)\left( {a - x} \right)}} \cr & \frac{1}{{\left( {a + x} \right)\left( {a - x} \right)}} = \frac{A}{{a + x}} + \frac{B}{{a - x}} \cr & 1 = A\left( {a - x} \right) + B\left( {a + x} \right) \cr & x = a \Rightarrow B = \frac{1}{{2a}} \cr & x = - a \Rightarrow A = - \frac{1}{{2a}} \cr & then \cr & \frac{1}{{\left( {a + x} \right)\left( {a - x} \right)}} = - \frac{1}{{2a\left( {a + x} \right)}} + \frac{1}{{2a\left( {a - x} \right)}} \cr & {\text{Rewrite}} \cr & \int {\frac{1}{{{a^2} - {x^2}}}} dx = \int {\left( { - \frac{1}{{2a\left( {a + x} \right)}} + \frac{1}{{2a\left( {a - x} \right)}}} \right)} dx \cr & {\text{Integrating}} \cr & = - \frac{1}{{2a}}\ln \left| {a + x} \right| + \frac{1}{{2a}}\ln \left| {a - x} \right| + C \cr & {\text{Using logarithmic properties}} \cr & = \frac{1}{{2a}}\ln \left| {\frac{{a - x}}{{a + x}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.