Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 522: 36

Answer

$${\text{False}}$$

Work Step by Step

$$\eqalign{ & \int {\frac{{3{x^4} + 5}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} \cr & {\text{False, the integrand }}\frac{{3{x^4} + 5}}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{ is not a proper rational function}} \cr & {\text{because if we expand the expression }}{\left( {{x^2} + 1} \right)^2}{\text{ we got }} \cr & {x^4} + 2{x^2} + 1,{\text{ then}} \cr & \frac{{3{x^4} + 5}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \frac{{3{x^4} + 5}}{{{x^4} + 2{x^2} + 1}} \cr & {\text{The numerator and denominator have the same degree, so the}} \cr & {\text{integrand is not a proper rational function}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.