Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 522: 41

Answer

$${e^x} - 2{\tan ^{ - 1}}\left( {\frac{{{e^x}}}{2}} \right) + C$$

Work Step by Step

$$\eqalign{ & {\text{Let }}u = {e^x},{\text{ }}du = {e^x}dx \cr & \int {\frac{{{e^{3x}}}}{{{e^{2x}} + 4}}dx} = \int {\frac{{{u^2}}}{{{u^2} + 4}}du} \cr & {\text{By the long division }}\frac{{{u^2}}}{{{u^2} + 4}} = 1 - \frac{1}{{{u^2} + 4}} \cr & {\text{Rewrite the integrand}} \cr & = \int {\left( {1 - \frac{1}{{{u^2} + 4}}} \right)du} \cr & = \int {du} - \int {\frac{1}{{{u^2} + 4}}du} \cr & {\text{Integrating}} \cr & = u - 2{\tan ^{ - 1}}\left( {\frac{u}{2}} \right) + C \cr & {\text{Write in terms of }}x,{\text{ replace }}u = {e^x} \cr & = {e^x} - 2{\tan ^{ - 1}}\left( {\frac{{{e^x}}}{2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.